Stratton Lock and Dam
Life Extension Study

April 16, 2012
Public Presentation
Goals and Objectives

• Provide new gate structure that has the same hydraulic capacity as existing structure but with improved winter operation characteristics

• Reduce waiting time for boats wanting to move through the locks
This Project Will Not:

• Eliminate need for winter drawdown
• Eliminate flooding in the Chain of lakes
• Eliminate flooding downstream of dam
• Eliminate waiting time for all boats going through lock
Gate Concerns

- Gates constructed in 1939 and have reached end of serviceable life
- The gate section of this structure has significant concrete deterioration.
Gate Concerns

- The tops of the walls along the access steps on both the east and west sides have heavy spalling and loss of concrete.
- The upper walkway surface repair topping is heavily cracked and spalled.
Gate Concerns

- The steel gates are heavily corroded with visible steel delamination on the downstream side of the gates.

- The upstream sides of the exposed gates are heavily corroded in certain areas.
Gate Concerns

Gates are difficult/hazardous to operate in winter
Pictures of Lock
Lock Concerns

The lock was opened for public use on June 1, 1960.

The lock is heavily used during its operation period, which can result in significant wait times during peak periods. These wait times have been known to be as high as four hours.
Lock Capacity

Stratton Lock Boat Passage Distribution
May 2000 through May 2010

- 10 boats/lock 1967 Report on Traffic Projection and Lock Sizing
- 6 boats/lock 2005 Anecdotal Lock Tender Report
- 4 boats/lock 2010 Anecdotal Lock Tender Report
- Recommended Lock Extension
- Recommended Over/Under Tainter Gates
Design Team Members

- **Hanson Professional Services**
 Gates Alternatives, Geotechnical and Support facilities

- **Bergmann Associates**
 Lock Alternatives

- **HDR**
 Site Power, Equipment Operating Systems and Controls

- **Office of Water Resources**
 Site Surveying, Hydraulics and Permitting
IDNR to Host Open House on Stratton Lock and Dam Lock Expansion and Sluice Gate Structure Replacement: The IDNR will host an open house on Wednesday, Dec. 14 to display alternatives for lock expansion and sluice gate structure replacement at William G. Stratton Lock and Dam on the Fox River in McHenry. The open house will be held on Dec. 14 from 4-7 p.m. at the William G. Stratton Lock and Dam, 2910 W. State Park Road in McHenry.
Decision Matrix Process

- Numerically Directed Weighting System (iterative process)
 - Design Criteria
 - Constructability Criteria
 - Performance Criteria
 - Costs
Gate Decision Criteria

- Construction Cost
- Fail Safe Capability
- Ability to be Remotely Controlled and Operated
- Ability to Operate the Gates in Manual Mode
- Routine Maintenance
- Hydraulic Efficiency
- Sediment/Debris Accumulation Constructability
- Reliability
- Public Safety
- Ice Considerations
- Bulkheads for Maintenance and Repair
- Permissibility
- Life Cycle Maintenance
Gate alternatives

- Rehabilitation of Existing gates
- Over/Under Taintor Gates
- Roller Gates
- Torque Tube Gates
Sample Gate Decision Matrix

<table>
<thead>
<tr>
<th>Decision Criteria</th>
<th>Weighting Factor</th>
<th>Score</th>
<th>Weighted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction Cost</td>
<td>5</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>Fail Safe Capability</td>
<td>5</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>Ability to be Remotely Controlled and Operated</td>
<td>2</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Ability to Operate the gates in manual mode</td>
<td>5</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Routine Maintenance</td>
<td>4</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>Hydraulic Efficiency</td>
<td>5</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Sediment/Debris Accumulation</td>
<td>3</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Constructability</td>
<td>3</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>Reliability</td>
<td>5</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Public Safety</td>
<td>4</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Ice Considerations</td>
<td>5</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>Bulkheads for Maintenance and Repair</td>
<td>5</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>Permitability</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Life Cycle Maintenance</td>
<td>3</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Total Score</td>
<td></td>
<td></td>
<td>152</td>
</tr>
<tr>
<td>Total Score without Construction Cost</td>
<td></td>
<td></td>
<td>137</td>
</tr>
</tbody>
</table>

Weighting Factor is relative to Criteria

Score is relative to Alternatives
Rehab of Existing Gates:

• Repair existing concrete substructure below elevation 740.00.
• Remove and replace concrete superstructure above elevation 740.00.
• Gate configuration: Five new 13 ft-9 in.- wide vertical roller type gates
Rehab of Existing Gates: Pros, Cons, Costs

- Hydraulic efficiency is identical (or nearly identical) to existing gates.
- Permitting is simplified.
- Additional investigation of substructure components is required.
- Increased potential for construction phase change orders due to nature of repair work.
- No improvement to debris management difficulty.
- No improvement to ice management.
- Anticipate additional future maintenance as compared against other alternatives.

$6,640,000
Profile of Roller Gates

Alternative

TOP OF STRUCTURE EL. 752.00
P.M.F. WATER EL. 749.26
TROLLEY CRANE
10'-0"
UPSTREAM DEWATERING BULKHEADS
HIGH WATER EL. 739.00
FLOW
BOTT OF CHANNEL EL. 730.00

TOP OF APRON EL. 730.00
BOTTOM OF GATE EL. 731.00
TOP OF GATE EL. 740.00

SECTION AT VERTICAL ROLLER GATE
Roller Gates: Pros, Cons, Costs

- Hydraulic efficiency is identical (or nearly identical) to existing gates.
- Common operating systems for gates simplifies inventory of spare parts.
- Improved gate sealing characteristics as compared with other alternatives.

- Gate operating machinery is exposed to the elements.
- No significant improvement in debris management opportunities.
- No improvement to ice management.

$7,240,000
Profile of Tainter Gates Alternative
Marseilles Field Trip
Marseilles Field Trip
Tainter Gates: Pros,

- Common operating systems for gates simplifies inventory of spare parts.
- A submersible gate will pass more ice than a nonsubmersible gate, given the same hydraulic conditions.
- Many gate freeze up problems are eliminated because the gate is kept under water.
- Can be enclosed upstream, downstream and on the sides (like the gates at Marseilles) to reduce the potential for ice and debris build-up.
- Does not require gate slots, which can become plugged with ice or debris and can cause cavitation.
<table>
<thead>
<tr>
<th>Tainter Gates: Cons, Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Difficulty of sealing at gate sill.</td>
</tr>
<tr>
<td>• Imprecise elevation control.</td>
</tr>
<tr>
<td>• In winter, freezing of this leakage of water inside the gate skin adds to the weight of the gate structure.</td>
</tr>
<tr>
<td>• The side and bottom seals of tainter spillway gates may leak, causing spray resulting in ice build-up on the pier walls or the gates themselves, causing operations problems.</td>
</tr>
<tr>
<td>• During severe cold, the gates must be moved frequently or they will freeze in place.</td>
</tr>
<tr>
<td>• The gates must supply sufficient current in the pool upstream to draw the ice to the gate</td>
</tr>
<tr>
<td>$6,600,000</td>
</tr>
</tbody>
</table>
Profile of Torque Tube Gates Alternative
Coffeen Field trip
<table>
<thead>
<tr>
<th>Torque Tube Gates: Pros</th>
</tr>
</thead>
</table>

- Minimizes extent of operating equipment exposed to the elements.
- Improved debris passage characteristics via torque tube gate sections.
- Preferred for accurate control of reservoir levels
- Preferred when floating debris and/or ice have to be skimmed.
- Redundancy of operating systems via two hydraulic power units and two actuators per gate section.
- Gate type has a positive performance history as reported by two gate vendors and an owner of a similar that has been in operation for over 50 years.
Torque Tube Gates: Cons, Costs

- Hydraulic power units and operating machinery requires construction of vaults which may necessitate channel bank modifications to achieve the required effective width for stream flow.
- Redundancy is reduced due to three (versus four or five, as compared with other alternatives) gate sections.
- Complexity of sealing torque tube at vault entry points.
- If hydraulic operators fail, by design, the gate will lower which would initiate loss of pool upstream of the gates until the drop leaf bulkheads are lowered.

$7,990,000
<table>
<thead>
<tr>
<th>Criteria</th>
<th>Alternative 1</th>
<th>Alternative 2</th>
<th>Alternative 3</th>
<th>Alternative 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Weight</td>
<td>Score</td>
<td>Weighted</td>
<td>Score</td>
</tr>
<tr>
<td>Construction Cost</td>
<td>5</td>
<td>5</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>Fail Safe Capability</td>
<td>5</td>
<td>5</td>
<td>25</td>
<td>4</td>
</tr>
<tr>
<td>Ability to be Remotely Controlled and Operated</td>
<td>2</td>
<td>5</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Ability to Operate Gates in Manual Mode</td>
<td>5</td>
<td>5</td>
<td>25</td>
<td>5</td>
</tr>
<tr>
<td>Routine Maintenance</td>
<td>4</td>
<td>3</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>Hydraulic Efficiency</td>
<td>5</td>
<td>5</td>
<td>25</td>
<td>5</td>
</tr>
<tr>
<td>Sediment/debris accumulation</td>
<td>3</td>
<td>4</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>Constructability</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>Reliability</td>
<td>5</td>
<td>4</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td>Public Safety</td>
<td>4</td>
<td>3</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>Ice Considerations</td>
<td>5</td>
<td>3</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>Bulkheads for Maintenance</td>
<td>5</td>
<td>5</td>
<td>25</td>
<td>5</td>
</tr>
<tr>
<td>Permitability</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Life Cycle Maintenance</td>
<td>3</td>
<td>4</td>
<td>12</td>
<td>5</td>
</tr>
</tbody>
</table>
Lock Decision Criteria

- Construction Cost
- Navigation During Construction
- Navigation in Final Condition
- Future Maintenance
- Operations During Construction
- Operations in Final Condition (labor required)
- Peak Usage Performance
- Off-Peak Performance
- System Redundancy
- Impacts on Other Users
- Operational Training
Lock alternatives

- Extension of Existing Lock
- New Lock on riverside of Existing Lock
- New Lock on land side of Existing Lock
Sample Lock Decision Matrix

<table>
<thead>
<tr>
<th>Decision Criteria</th>
<th>Weighting Factor</th>
<th>Score</th>
<th>Weighted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction Cost</td>
<td>5</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>Navigation During Construction</td>
<td>4</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Navigation in Final Condition</td>
<td>4</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>Future Maintenance</td>
<td>3</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>Operations During Construction</td>
<td>2</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Operations in Final Condition (labor required)</td>
<td>4</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>Peak Usage Performance</td>
<td>5</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>Off-Peak Performance</td>
<td>2</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>System Redundancy</td>
<td>4</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>Impacts on Other Users</td>
<td>1</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Operational Training</td>
<td>2</td>
<td>5</td>
<td>10</td>
</tr>
</tbody>
</table>

Total Score 144

Total Score without Construction Cost 119
Plan View of Lock Extension
Plan View of Lock Extension
Lock Extension: Pros

- Access to opposite (east) wall not required for operation of expanded facility.
- Boaters are accustomed to operational procedures for single lock (lower user learning curve).
- Maintains existing gate control house.
- Pilot house structure not required.
- Lower operational and maintenance costs.
- Least amount of approach channel improvements required to facilitate alternative
Lock Extension: Cons, Costs

<table>
<thead>
<tr>
<th>Cons</th>
<th>Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Highest risk of construction activity impeding or congesting traffic during boating season.</td>
<td>- $4,300,000</td>
</tr>
<tr>
<td>- Lowest increase in boater lockage capacity (225% increase for this alternative compared to 246% increase for other alternatives).</td>
<td></td>
</tr>
<tr>
<td>- Reduced facility redundancy. There would be no opportunity to continue lockages if the lock needed to be shut down for maintenance.</td>
<td></td>
</tr>
</tbody>
</table>
Plan View of Riverside Lock
Plan View of Riverside Lock
Riverside Lock: Pros

• Highest increase in boater lockage capacity.
 (246% increase compared to 225% increase for lock extension)

• Lowest risk of construction activity impeding or congesting traffic during boating season.

• Best facility redundancy. One lock can remain operational if second lock requires maintenance.

• Maintains existing gate control house.
Riverside Lock: Cons, Cost

- Pilot house structure is required.
- Higher operational and maintenance costs, although operations can be reduced to only one lock during non-peak periods to reduce such expenses.
- Requires more approach excavations and more complex guidewall improvements for widened access channel.
- Requires more approach channel maintenance dredging.
- Construction access more difficult to and from island (river) side.
- More complex vessel traffic patterns for lockmaster to regulate

$6,140,000
Plan View of Landside Lock
Plan View of Landside Lock
Land Side Lock: Pros

- Highest increase in boater lockage capacity.
 (246% increase compared to 225% increase for lock extension)
- Lower risk of construction activity impeding or congesting traffic during boating season.
- Best facility redundancy. One lock can remain operational if second lock requires maintenance.
- Alignment able to connect with existing approach wall, which can remain undisturbed.
- Construction access easier from land side, not requiring much work across channel.
Land Side Lock: Cons, Costs

- Highest disturbance to existing landside site features and utilities, such as parking area, lock house, septic, and water. There is also potential for impacts wetland areas and the existing levee system. Land acquisition may also be required.

- Pilot house structure is required.

- Higher operational and maintenance costs, although operations can be reduced to only one lock during non-peak periods to reduce such expenses.

- Possible boat traffic interferences with sheriff's mooring area immediately upstream of lock.

- More complex vessel traffic patterns for lockmaster to regulate.

$6,190,000
Final Lock Decision Matrix

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Weight</th>
<th>Score</th>
<th>Weighted</th>
<th>Score</th>
<th>Weighted</th>
<th>Score</th>
<th>Weighted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction Cost</td>
<td>5</td>
<td>5</td>
<td>25</td>
<td>3</td>
<td>15</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>Navigation During Construction</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>16</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>Navigation in Final Condition</td>
<td>4</td>
<td>5</td>
<td>20</td>
<td>3</td>
<td>12</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>Life Cycle & Future Maintenance</td>
<td>3</td>
<td>4</td>
<td>12</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Operations During Construction</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>5</td>
<td>10</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Operations in Final Condition</td>
<td>4</td>
<td>5</td>
<td>20</td>
<td>4</td>
<td>16</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>Peak Usage Performance</td>
<td>5</td>
<td>3</td>
<td>15</td>
<td>5</td>
<td>25</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>Off-Peak Performance</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>5</td>
<td>10</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>System Redundancy</td>
<td>4</td>
<td>3</td>
<td>12</td>
<td>5</td>
<td>20</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>Impact on Other Users</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Operational Training</td>
<td>2</td>
<td>5</td>
<td>10</td>
<td>4</td>
<td>8</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>

Total Score: 137, 143, 143

Total Score without Construction Cost (1) & Life Cycle Costs (4): 100, 122, 122

Alt 2A / Alt 1 Ratio = 1.04 Based on Total Score
Alt 2A / Alt 1 Ratio = 1.14 Based on Total Score without Construction Cost (1)
Alt 2A / Alt 1 Ratio = 1.22 Based on Total Score without Construction Cost (1) & Life Cycle Costs (4)
Review of Lock Capacities and Costs

<table>
<thead>
<tr>
<th></th>
<th>Existing Lock</th>
<th>Extended Lock</th>
<th>Dual Lock</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Boats /Lockage</td>
<td>4</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Boats Passed/Hour</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Two Direction Traffic</td>
<td>24</td>
<td>49.4</td>
<td>58.3</td>
</tr>
<tr>
<td>One Direction Traffic</td>
<td>12.6</td>
<td>28.4</td>
<td>31.1</td>
</tr>
<tr>
<td>Cost</td>
<td>$0</td>
<td>$4,300,000</td>
<td>$6,200,000</td>
</tr>
</tbody>
</table>
Implementation Schedule

STRATTON LOCK & DAM IMPROVEMENTS - TIMELINE

<table>
<thead>
<tr>
<th>Year</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jan</td>
<td>Feb</td>
<td>Mar</td>
<td>Apr</td>
</tr>
<tr>
<td>Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permitting - IEPA, USCOE, IDNR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bidding</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EXISTING LOCK TO REMAIN FULLY OPERATIONAL DURING CONSTRUCTION
Gate Construction Sequence

Phase 1 is in magenta
Phase 2 is in green
Lock Construction Sequence

Stages 1-3 during first non-boating season
Lock Construction
Sequence

1A - Install upper dewatering bulkhead
1B - Install cofferdam wall for lower monolith
1C - Install earthen stability berm
1D - Dewater existing lock & lower forebay area
Lock Construction Sequence

2A - Excavate for lower monolith
2B - Construct new lower gate monolith
2C - Install sheet pile walls for extension of lock chamber
2D - Construct lock floor and strut system
2E - Construct supplemental filling/emptying basin
Lock Construction Sequence

3A-Install emptying port
3B-Install filling port
3C-Backfill lower forebay area
3D-Rewater existing and extended lock area
3E-Remove upper dewatering bulkhead
3F-Remove portion of lower cofferdam
Lock Construction Sequence

Stages 4-5A during boating season
Lock Construction
Sequence

- **4A** - Install intake gatewell cofferdam
- **4B** - Install remainder of filling port
- **4C** - Construct intake gatewell
- **4D** - Remove intake gatewell cofferdam
- **4E** - Remove existing lock wingwall tieback system
- **5A** - Install extension wall tieback system
Lock Construction Sequence

Stages 5B-5F during second non-boating season
5B - Install dewatering bulkheads & dewater lock
5C - Relocate Lower miter gate to new monolith
5D - Complete approach dredging, stone protection and fender system
5E - Rewater locks and remove bulkheads
5F - Commission Extended lock
Next Steps

- Complete construction documents (plans and specifications) for gates and lock
- Submit permit applications to Corps, IEPA, OWR and others
- Advertize for bids using IDOT system
- Determine if funding is available to support both lock and gates construction
- Award contract(s)
Stratton Operations Web Site
http://dnr.state.il.us/owr/StrattonOperations.htm